On the basis of the iterative encoding algorithm of low density parity check ( LDPC) codes, a construction method of irregular LDPC codes checking matrix in lower triangle structure was presented. 针对LDPC码的迭代编码算法提出了一种具有下三角结构的非规则LDPC码校验矩阵的构造方法。
The simple and easy method for exchanging evaluation between the generator matrix and parity& check matrix based on the linear block codes 线性分组码的生成矩阵和一致监督矩阵的简易互求方法
Low density parity check ( LDPC) code, which is a special case of error correction code with sparse parity-check matrix, has the performance very close to the Shannon Limit. LDPC码是一种特殊的具有稀疏校验矩阵的纠错编码,其性能逼近香农限。
Combining with the error-correcting theory and using the parity check matrix and error syndrome, the status of places in Petri net is verified and corrected. 结合差错控制原理,利用一致校验矩阵和错误伴随式,对Petri网库所状态进行检错,纠错。
Low Density Parity Check ( LDPC) Codes are a kind of linear block codes approaching Shannon limit. They can be constructed either with spare parity-check matrix or with factor graphs. LDPC码是一种可以接近香农限的线性分组码,可通过稀疏奇偶校验矩阵来构造,也可以用因子图来构成。
Parity check matrix H is a key for the performance of LDPC codes. 奇偶校验矩阵H是决定一个LDPC码性能的关键。
Then discusses conventional encoding and efficient encoding using special sparse parity check matrix in encoding algorithm, and expatiates the principle of Message Passing and SPA which has the best performance in decoding algorithm. 在编码算法里详细讨论了传统的编码算法以及使用特殊形式奇偶校验矩阵的快速编码算法。在译码算法里介绍了MP算法集的基本原理和译码性能最好的和乘积译码算法。
This paper constructs irregular LDPC codes of unequal error protection with a parity check matrix in a lower triangular. 采用了近似下三角校验阵的形式,构造了一类具有不等错误保护的非规则LDPC码。
Due to the particular relation of generator matrix and parity check matrix, it can achieve unequal error protection performance with the modified decoding algorithm. 由于校验阵和生成阵满足一定的关系,因此可以采用修正的译码算法来实现对码字的不等错误保护。
In the high error rate condition, the Walsh-Hadamard transform can be used to solve the parity check matrix of the short length binary linear block codes. 在误码较高,码长较短时,通过Walsh-Hadamard变换求解校验矩阵来完成二进制线性分组码的盲识别。
LDPC ( Low Density Parity Check Code) was initially proposed by Gallager in his doctoral dissertation in 1962, and it is also called Gallager code. It is a kind of linear block error-correcting code that is represented by very sparse matrix. 低密度奇偶校验(LowDensityParityCheckcode,LDPC)码是Gallager于1962年在他的博士论文中首次提出的一种可以用非常稀疏的校验矩阵表示的线性分组纠错码,亦称Gallager码。
An algorithm for constructing valid cuts is presented for the new decoding model at the base of elementary transformation on the parity check matrix. Valid cuts at current fractional solution can be obtained directly by this algorithm and therefore the efficiency will be enhanced. 针对该模型,给出一个基于校验矩阵初等变换处理的有效割(奇偶校验割)构造算法,可直接获得当前分数解的有效割,提高了有效割寻找效率。